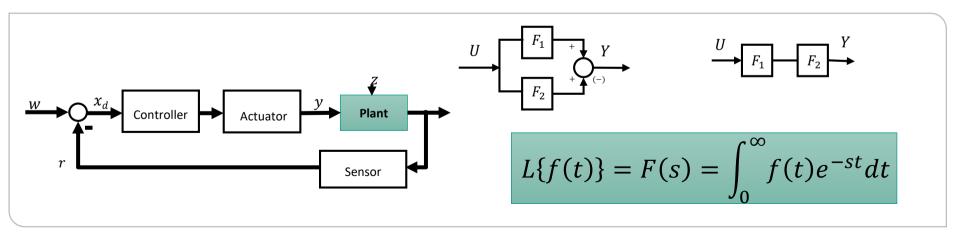


Robotics I: Introduction to Robotics Chapter 5 – Control of Robot Systems

Tamim Asfour

https://www.humanoids.kit.edu



Contents

Introduction

- Fundamentals of control
- Control Concepts for Manipulators

Control Theory

Control theory (Regelungstechnik):

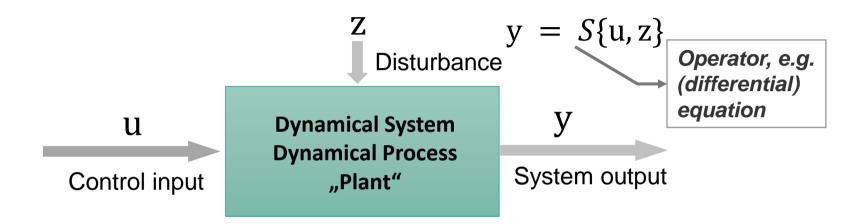
Theory of automatic, goal-orientated influencing of dynamic, time-dependent processes at run-time

Fundamental situation in control theory:

Design of a system for automatic, targeted influencing a process with incomplete system knowledge, in particular in the presence of disturbances

Methods of control theory are universally applicable, independent of the specific nature of the given system

Structure and Operation of a Control System



Task:

The system output is to be influenced via the control input in such a way that a desired system behavior (i.e. system output) is achieved, despite a disturbance that is not or only partially known

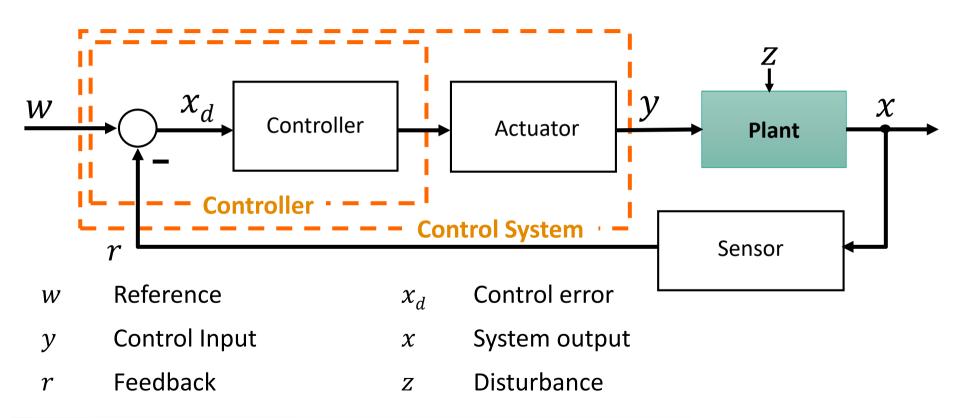
Structure and Operation of a Control System

Principle of operation:

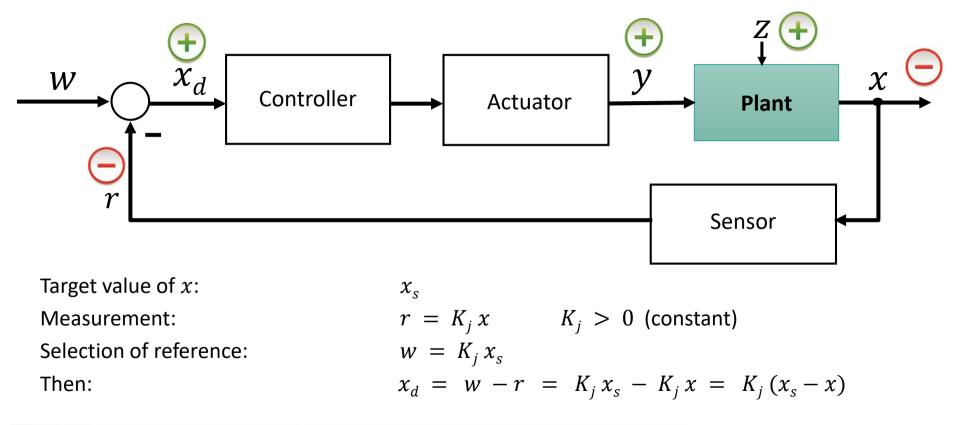
The plant is to be observed continuously, and the obtained information is used to change the system input variable in such a way that its output variables matches the desired output as close as possible, despite the effects of the disturbance.

A system that can achieve this is called a **closed-loop control system** (Regelung).

Structure of a Control System



Structure of a Control System



Operation of a Control System

Desired value of x: x_s Reference value: $r = K_j x$ $K_j > 0$ (constant)Measured value of x: $w = K_j x_s$ Then: $x_d = w - r = K_j x_s - K_j x = K_j (x_s - x)$ Initial Situation: $x = x_s \Rightarrow x_d = 0$ (stationary system)

- z becomes larger \Rightarrow x decreases \Rightarrow
- r decreases \Rightarrow x_d increases \Rightarrow
- y increases \Rightarrow x increases to resemble the desired value x_s

In short: The disturbance is regulated.

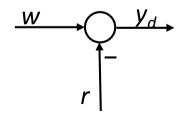
Operation of a Control System

The system output is changed to resemble the reference value, i.e. the output follows the reference value.

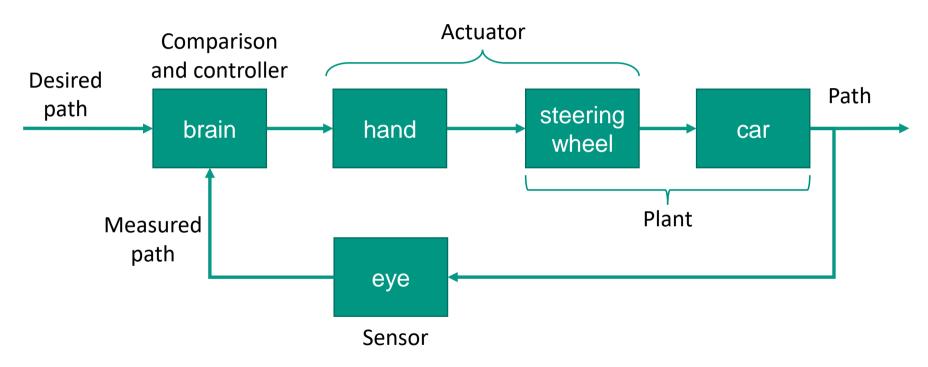
The control system is a closed loop: Closed loop control

Essential:

Feedback is SUBTRACTED from the reference



Example: Car Steering as Control System



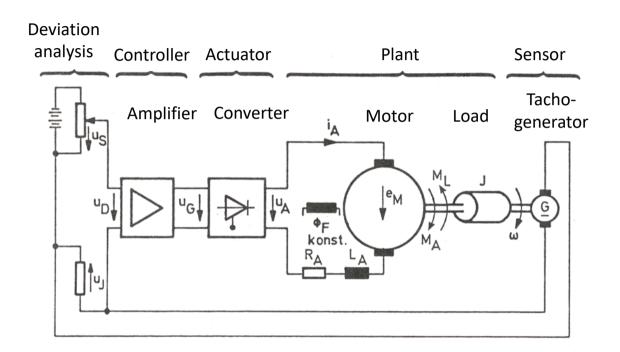
German original taken from: Regelungstechnik; O. Föllinger

Definition: Control System

A control system is an arrangement that continuously observes the plant's output, computes the deviation from a reference value and uses this error to adjust the system output to match the reference.

This is achieved with only **incomplete** knowledge about the plant and, especially, about the disturbance.

Example: Speed control of a DC motor



German original taken from: Regelungstechnik; O. Föllinger

Example: Control in the Joint Angle Space

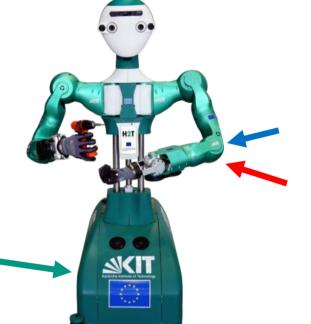
Control variables for the joint actuators are generated from the target and measured joint angles



Example: ARMAR-6

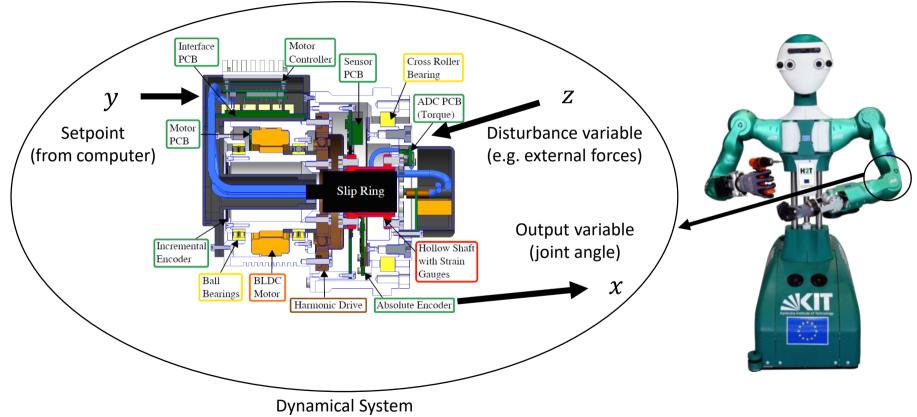
High Level: Computer

- Central control of the joints
- Position (e.g., from inverse kinematics)
- Velocity (e.g., from inverse kinematics)
- Torque (e.g., from inverse dynamics)
- EtherCAT-Bus (1000 Hz)
- Low Level: Motor Controllers
 - Control (up to 20 kHz) for
 - PWM
 - current

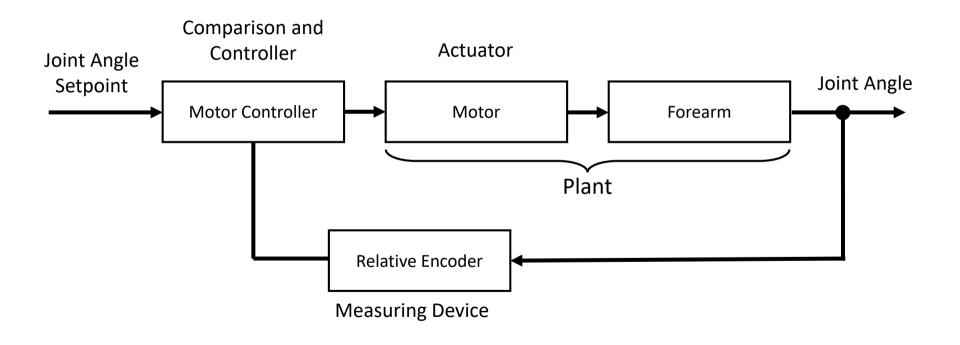


Measurement of position, torque and current in the joint

Example: ARMAR-6



Example: ARMAR-6



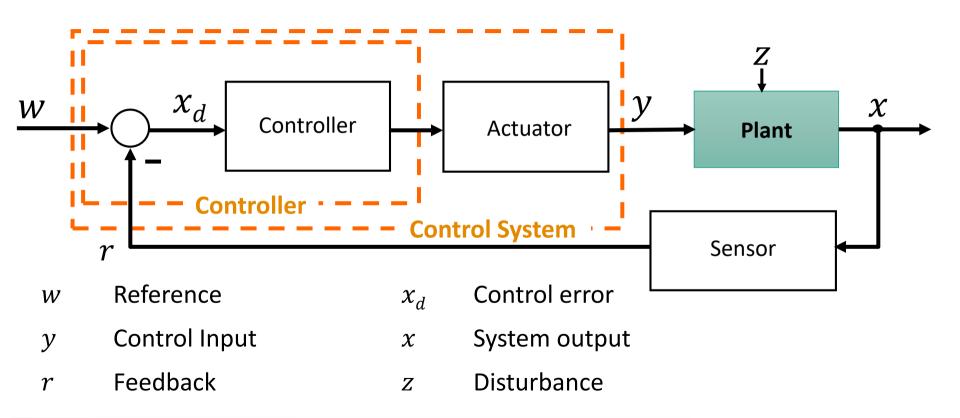
Control Loop

Block diagram of a control system:

From physical laws, we can derive equations (differential or difference equations) that describe the relationships between time-varying quantities of the system.

- The time-varying quantities and their equations are represented by suitable symbols.
- A block in the block diagram uniquely assigns each time response of the input variable to a time response of the output variable, thus acting as a transfer element.

Structure of a Control System



Contents

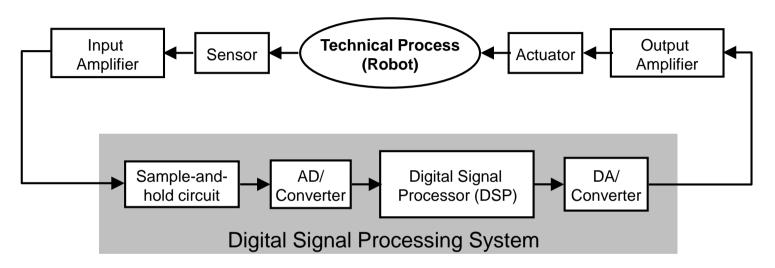
Karlsruhe Institute of Technology

Introduction

Fundamentals of Control

- Introduction
- Laplace Transform
- Transfer Element
- Control Loop Examples
- Stability of Control Systems
- Test Functions
- Control Concepts for Manipulators

Diagram of Digital Signal Processing Systems



- Information acquisition using sensors
- "Digitize" sensor data
- Algorithms of digital signal processing
- Convert processed signal back into an analog signal

Diagram of Digital Signal Processing Systems

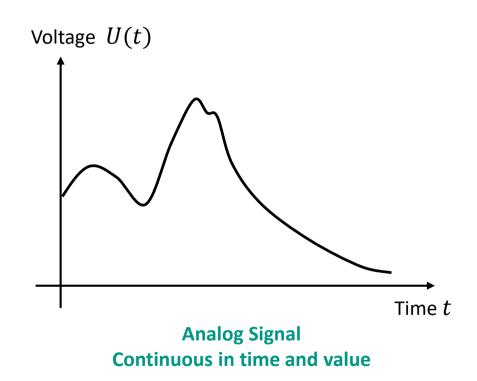
- Input amplifier to amplify the sensor signal and convert it to the required voltage range
- Sample-and-hold element for the periodic sampling of the input signal. The sampled value is held constant within a sampling period
- Input amplifier with anti-aliasing filter to eliminate high interference frequencies from the sensor signal

The output amplifier smooths the signal from the DA converter (reconstruction filter)

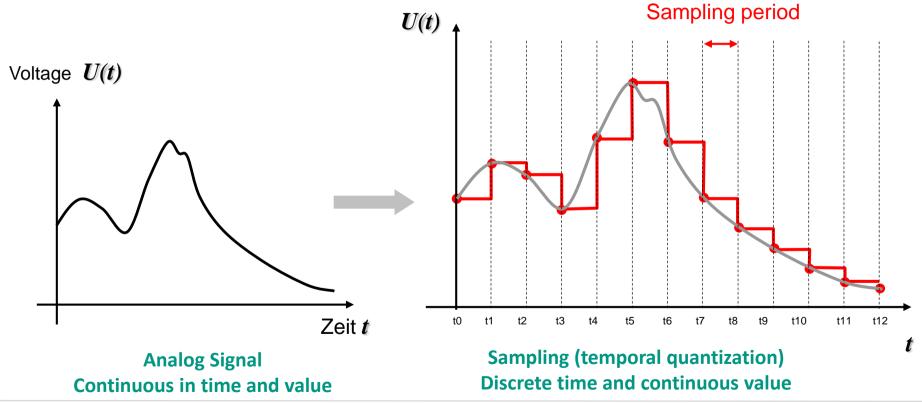
Continuous and Discrete Signals (1)

Signal as a physical carrier of information

- A signal is a function of an independent variable t, which usually represents time. The signal is represented as U(t).
- Analog Signal: U(t) is defined at every moment and can take any arbitrary value (signal with continuous values).



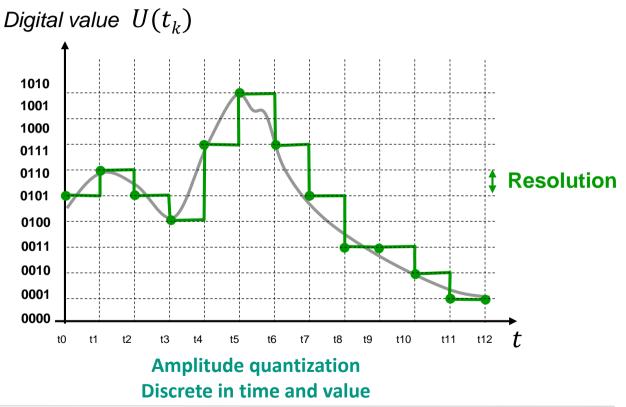
Continuous and Discrete Signals (2)



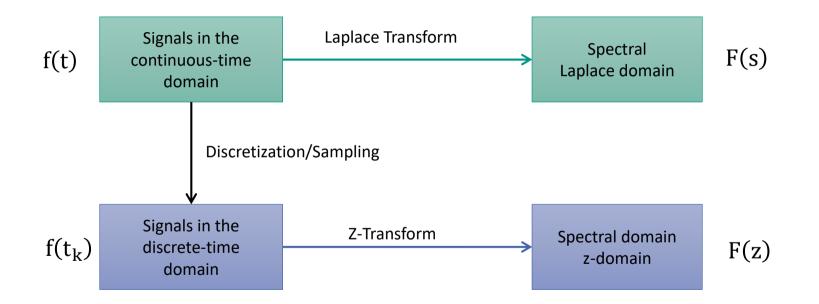
Continuous and Discrete Signals (3)

Signal U(t_k) with a finite number of different values

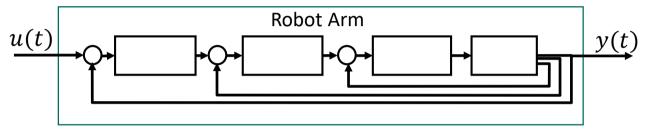
Important: Signals with two different values



Description of Dynamic Systems



Fundamentals of Control



Input signal u(t): Desired position (reference variable, setpoint)

• Output signal y(t): Actual position (process variable)

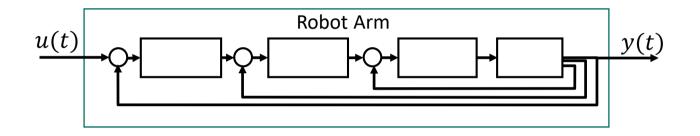
Objective: Describe output signals for a given input signal

Procedure:

- 1. Description of the system with differential equations (or difference equations)
- 2. Transform into the frequency domain (Laplace)
- 3. Deriving the transfer function

Fundamentals of Control

Example: Position control for a robot joint



Input signal u(t): Desired position (reference variable, setpoint)
 Output signal y(t): Actual position (process variable)

Transfer Function: Application

Transform to the frequency domain (Laplace Transform)

 $L[u(t)] = U(s) \qquad \qquad L[y(t)] = Y(s)$

Transfer Function

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\text{Output}}{\text{Input}}$$

The transfer function is important for the controller design:

- Analysis of the system behavior with different input signals → Example: Stability analysis
- Determination of the controller parameters → Optimization of the parameters for the given system

Contents

Karlsruhe Institute of Technology

Introduction

Fundamentals of Control

- Introduction
- Laplace Transform
- Transfer Element
- Control Loop Examples
- Stability of Control Systems
- Test Functions
- Control Concepts for Manipulators

Laplace Transform

$$L\{f(t)\} = F(s) = \int_0^\infty f(t)e^{-st}dt \qquad s \coloneqq \sigma + j\omega; \quad f(t) = 0, t < 0$$

Differential and integral expressions are replaced by algebraic expressions

Solving equation in the **frequency domain** instead of the time domain

Integral must converge – fulfilled for linear f(t)

Laplace Transform

 $\bullet f(t) = a$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t) \cdot e^{-st} dt$$

Laplace Transform

 $\bullet f(t) = a$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t) \cdot e^{-st} dt$$

$$\mathcal{L}[a] = \int_0^\infty a \cdot e^{-st} dt = a \cdot \int_0^\infty e^{-st} dt$$
$$\mathcal{L}[a] = a \cdot \left[-\frac{1}{s} \cdot e^{-st} \right]_0^\infty = a \cdot \left(0 - \left(-\frac{1}{s} \cdot 1 \right) \right)$$
$$\mathcal{L}[a] = \frac{a}{s}$$

Laplace Transformation of f(t) = t

 $\bullet f(t) = t$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t) \cdot e^{-st} dt$$

$$\mathcal{L}[t] = \int_0^\infty t \cdot e^{-st} dt$$

 $\int_0^\infty u(t) \cdot v'(t) \, dt = u(t) \cdot v(t)|_0^\infty - \int_0^\infty u'(t) \cdot v(t) dt \quad \text{Integration by parts}$

Laplace Transformation of f(t) = t

 $\bullet f(t) = t$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t) \cdot e^{-st} dt$$

$$\mathcal{L}[t] = \int_0^\infty t \cdot e^{-st} dt$$

$$\int_0^\infty u(t) \cdot v'(t) dt = u(t) \cdot v(t)|_0^\infty - \int_0^\infty u'(t) \cdot v(t) dt$$
Integration by parts
$$u(t) = t, \ u'(t) = 1$$

$$v'(t) = e^{-st}, \ v(t) = -\frac{1}{s} \cdot e^{-st}$$

Laplace Transformation of f(t) = t

 $\bullet f(t) = t$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t) \cdot e^{-st} dt$$

$$\mathcal{L}[t] = \int_0^\infty t \cdot e^{-st} dt \qquad \int_0^\infty u(t) \cdot v'(t) \, dt = u(t) \cdot v(t) |_0^\infty - \int_0^\infty u'(t) \cdot v(t) \, dt$$

$$\mathcal{L}[t] = \left[t \cdot \left(-\frac{1}{s} \cdot e^{-st}\right)\right]_0^\infty - \int_0^\infty 1 \cdot \left(-\frac{1}{s} \cdot e^{-st}\right) dt$$
$$\mathcal{L}[t] = (0 - 0) - \left[\frac{1}{s^2} \cdot e^{-st}\right]_0^\infty = 0 - \left(0 - \frac{1}{s^2}\right) = \frac{1}{s^2}$$

$$u(t) = t, u'(t) = 1$$

 $v'^{(t)} = e^{-st}, v(t) = -\frac{1}{s} \cdot e^{-st}$

Laplace Transformation of $\dot{f}(t)$

• Laplace transform of the time derivative $\dot{f}(t)$

$$\int_0^\infty u(t)\cdot v'(t)\ dt = u(t)\cdot v(t)\left|_0^\infty - \int_0^\infty u'(t)\cdot v(t)dt\right|$$

$$\mathcal{L}[\dot{f}(t)] = \int_0^\infty e^{-st} \frac{df}{dt} dt =$$

Laplace Transformation of $\dot{f}(t)$

Laplace transform of the time derivative $\dot{f}(t)$

$$\int_0^\infty u(t)\cdot v'(t)\,dt = u(t)\cdot v(t)\Big|_0^\infty - \int_0^\infty u'(t)\cdot v(t)dt$$

$$\mathcal{L}[\dot{f}(t)] = \int_0^\infty e^{-st} \frac{df}{dt} dt = e^{-st} f(t) |_0^\infty - \int_0^\infty -s \cdot e^{-st} f(t) dt$$

Assumption: $\lim_{t \to \infty} e^{-st} f(t) \to 0$

$$\mathcal{L}[\dot{f}(t)] = s \int_0^\infty e^{-st} f(t) dt - f(0) = s \cdot F(s) - f(0)$$

Laplace Transformation of $\int_0^t f(t) dt$

• Laplace transform of $\int_0^t f(t) dt$

$$\int_0^\infty u(t)\cdot v'(t)\,dt = u(t)\cdot v(t)\Big|_0^\infty - \int_0^\infty u'(t)\cdot v(t)dt$$

$$\mathcal{L}\left[\int_0^t f(t)\,dt\right]$$

$$= \int_0^\infty \int_0^t f(t) \, dt \, \cdot e^{-st} \, dt = \int_0^t f(\tau) \, d\tau \, \cdot (-\frac{1}{s} \cdot e^{-st}) \Big|_0^\infty$$

$$-\int_0^\infty \left(-\frac{1}{s}\right) \cdot e^{-st} f(t)dt = \frac{1}{s} \int_0^\infty f(t) \cdot e^{-st} dt = \frac{1}{s} F(s)$$

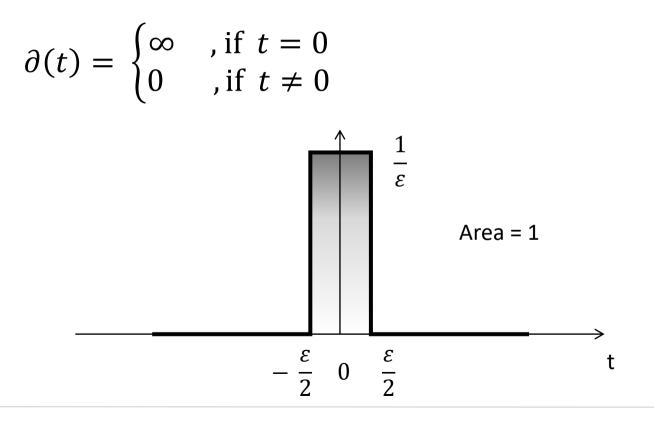
$$\mathcal{L}\left[\int_0^t f(t) \, dt\right] = \frac{1}{s} \, F(s)$$

Laplace Transform of
$$f(t) = e^{-\alpha t}$$

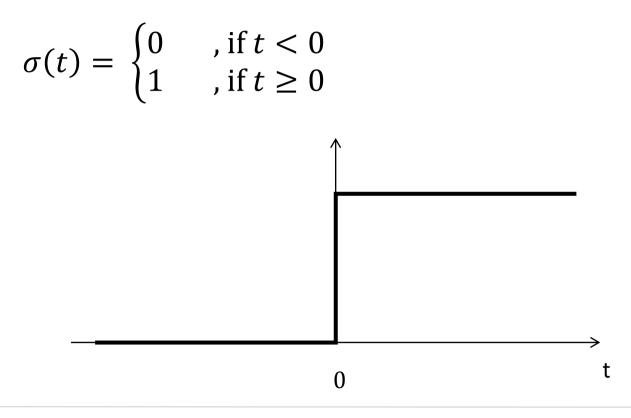
$$\mathcal{L}[e^{-\alpha t}] = \int_0^\infty e^{-\alpha t} \cdot e^{-st} dt = \int_0^\infty e^{-(s+\alpha)t} dt = \frac{1}{s+\alpha}$$

$$\mathcal{L}[e^{-\alpha t}] = \frac{1}{s+\alpha}$$

Unit Impulse Function (Dirac Delta Function)



Unit Step Function



Laplace Transformation of $\delta(t)$ and $\sigma(t)$

• Laplace transform of $\delta(t)$

$$\mathcal{L}[\delta(t)] = \int_0^\infty \delta(t) \cdot e^{-st} dt = 1$$

• Laplace transform of $\sigma(t)$

$$\mathcal{L}[\sigma(t)] = \int_0^\infty \sigma(t) \cdot e^{-st} dt = \int_0^\infty 1 \cdot e^{-st} dt = -\frac{1}{s} \cdot e^{-st} \Big|_0^\infty$$

$$s = \delta + j\omega \Rightarrow e^{-st} = e^{-(\delta + j\omega)t} = e^{-\delta t} \cdot e^{-j\omega t}$$
$$= e^{-\delta t} \cdot (\cos \omega t - j \sin \omega t)$$

Complex representation of a periodic oscillation

Laplace Transformation

$$e^{-\delta t} = \begin{cases} 0 & for \, \delta > 0 \Rightarrow Oscillation \ diminishes \\ 1 & for \, \delta = 0 \Rightarrow Oscillation \\ -\infty & for \, \delta < 0 \Rightarrow Oscillation \ increases \end{cases}$$

Laplace transform of $\sigma(t)$ exists only for $\delta > 0$ or Re(s) > 0 (right half of the complex plane)

Laplace Transform: Properties and Rules

Linearity

Convolution:

Limit value:

Differentiation:

Integration:

Displacement: $L\{e^{\alpha t}\} = \frac{1}{s-\alpha}$ $L\{\sin(\alpha t)\} = \frac{\alpha}{s^2 + \alpha^2}$ $L\{\alpha f_1(t) + \beta f_2(t)\} = \alpha F_1(s) + \beta F_2(s)$

 $L\{f_1(t) * f_2(t)\} = F_1(s) \cdot F_2(s)$

$$f(t = 0) = \lim_{s \to \infty} sF(s)$$
$$L\left\{\frac{d}{dt}f(t)\right\} = sF(s) - f(0)$$
$$L\left\{\int f(t)dt\right\} = \frac{1}{s}F(s)$$

 $L\{f(t - \tau)\} = e^{-\tau s} F(s)$ $L\{t^{n}\} = \frac{n!}{s^{n+1}} (n = 1, 2 \dots)$ $L\{\cos(\alpha t)\} = \frac{s}{s^{2} + \alpha^{2}}$

Laplace Transform Table

Time Domain	Laplace Domain
f(t)	$\mathcal{L}(f(t)) = F(s)$
f(t),g(t)	F(s), G(s)
1	1/ <i>s</i>
$e^{\alpha t}$	$1/(s-\alpha)$
$t^{n}e^{\alpha t}$, $n = 1, 2,$	$n!/(s-a)^{n+1}$
t^n	$n!/s^{n+1}$, $n = 1, 2,$
$t^{-\frac{1}{2}}$	$\sqrt{\pi/s}$
$sin(\alpha t)$	$\alpha/(s^2+\alpha^2)$
$\cos(\alpha t)$	$s/(s^2 + \alpha^2)$
sinh(kt)	$k/(s^2 - k^2)$
$\cosh(kt)$	$s/(s^2 - k^2)$

Contents

Karlsruhe Institute of Technology

Introduction

Fundamentals of Control

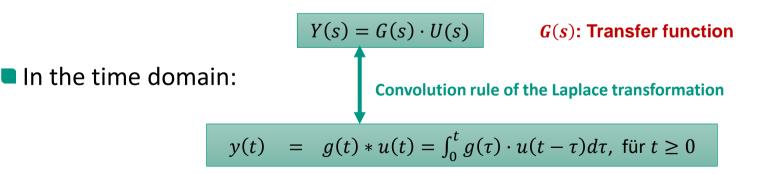
- Introduction
- Laplace Transform
- Transfer Element
- Control Loop Examples
- Stability of Control Systems
- Test Functions
- Control Concepts for Manipulators

Transfer Elements and Transfer Function

Linear time-invariant transfer element (LTI element)

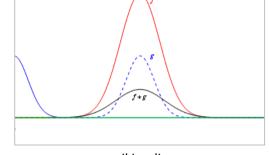
u(t)

In the complex s-domain:



g(t)

y(t)



wikipedia

Elementary Transfer Element (1)

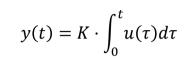
Name **Functional Relationship** Symbol **P-Element** $y(t) = K \cdot u(t)$ u(t)y(t)**Proportional Element** y(t) $y(t) = K \cdot \int_0^t u(\tau) d\tau$ **I-Element** u(t)**Integral Element D-Element** y(t) $y(t) = K \cdot \dot{u}(t)$ u(t)**Derivative Element** T₊-Element $v(t) = K \cdot u(t - T_t)$ y(t)u(t)**Time Delay Element**

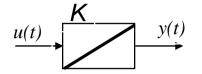
H2T

(Dead time Element)

Transfer Function of I-Element

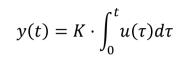
I-Element

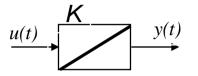




Transfer Function of I-Element

I-Element Integral Element



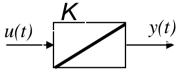


Laplace:

Transfer Function of I-Element

I-Element Integral Element

$$y(t) = K \cdot \int_0^t u(\tau) d\tau$$



Laplace:

$$Y(s) = K \cdot \frac{1}{s} \cdot U(s) = \frac{K}{s} \cdot U(s)$$

$$G(s)$$

Example: $u(t) = \sigma(t)$, $U(s) = \frac{1}{s}$ (Step function)

$$Y(s) = \frac{K}{s} \cdot \frac{1}{s} = \frac{K}{s^2} \Rightarrow y(t) = K \cdot t$$

$$f(t) = \frac{K}{s} \cdot \frac{1}{s} = \frac{K}{s^2}$$

. .

Elementary Transfer Element (2)

Name Functional Relationship Symbol

Summing Element

Characteristic Element

S-Element

$$y(t) = K \cdot f(u(t))$$

 $y(t) = \pm u_1(t) \pm u_2(t)$

$$u_1(t) \qquad y(t)$$

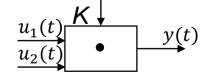
$$u_2(t)$$

$$K$$

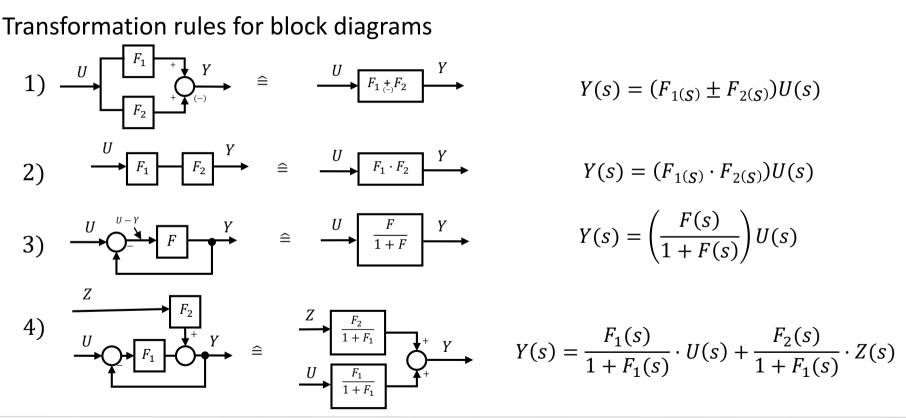
$$u(t) \qquad y(t)$$

M-Element Multiplication Element

$$y(t) = K \cdot u_1(t)u_2(t)$$



Transfer Element: Rules



Transfer Element: Rules

Transformation rules for block diagrams

3)
$$U \xrightarrow{U-Y} F \xrightarrow{Y} \cong U \xrightarrow{F} Y \xrightarrow{Y} Y = \left(\frac{F(s)}{1+F(s)}\right) U(s)$$

Transfer Element: Rules

1 . . .

Transformation rules for block diagrams

3)
$$U \bigoplus_{r} F \bigoplus_{r} Y \cong U \bigoplus_{r} F \bigoplus_{r} Y \bigoplus_{r} Y \bigoplus_{r} Y(s) = \left(\frac{F(s)}{1 + F(s)}\right) U(s)$$

$$Y(s) = F(s) \cdot \left(U(s) - Y(s)\right)$$

$$Y(s) + F(s) \cdot Y(s) = F(s) \cdot U(s)$$

$$Y(s) \cdot \left(1 + F(s)\right) = F(s) \cdot U(s)$$

$$\frac{Y(s)}{U(s)} = \frac{F(s)}{1 + F(s)}$$

Recap

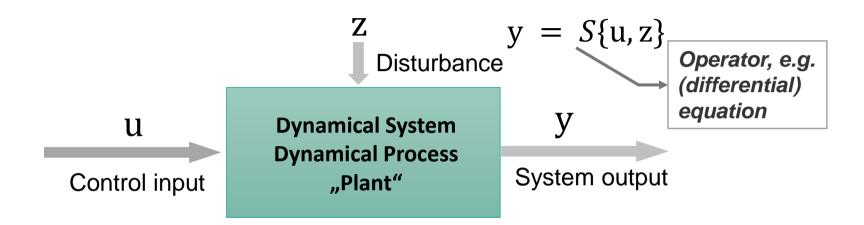
Definition of control system

Laplace transform

Transfer function

Transfer element

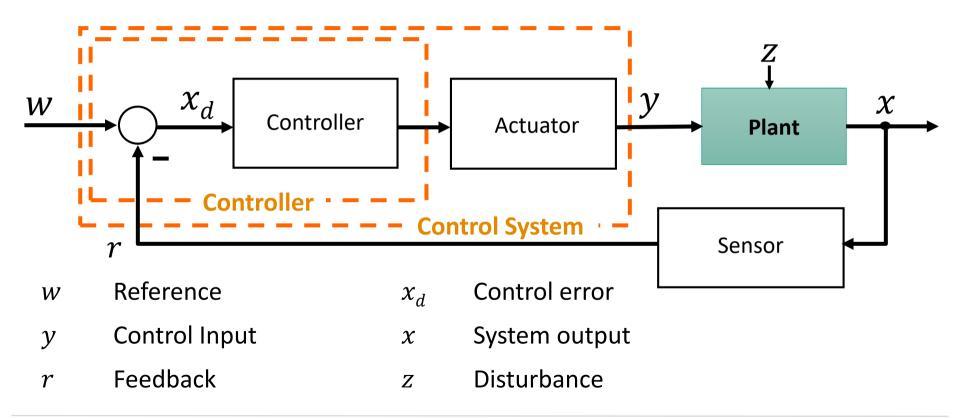
Recap: Structure and Operation of a Control System

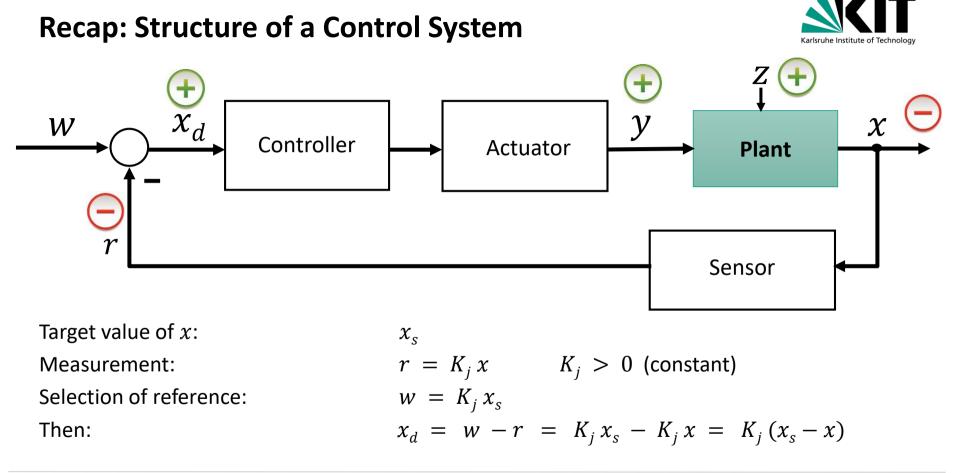


Task:

The system output is to be influenced via the control input in such a way that a desired system behavior (i.e. system output) is achieved, despite a disturbance that is not or only partially known

Recap: Structure of a Control System





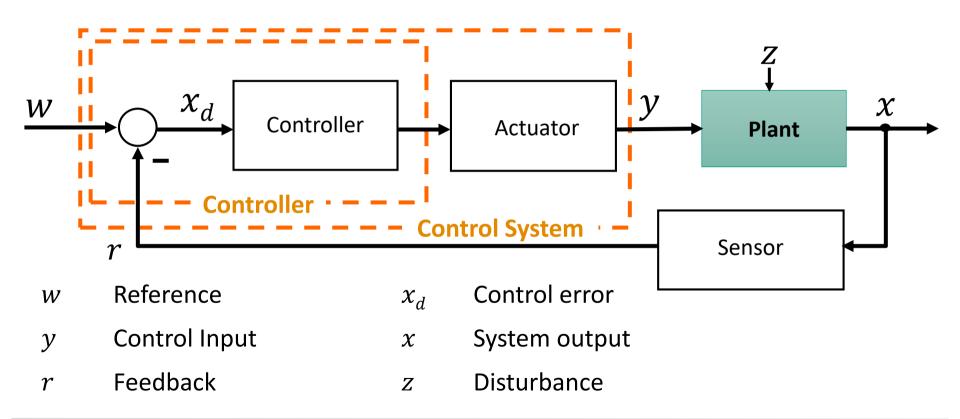
Creating the Diagram of the Control Loop

From physical laws, we can derive equations (differential or difference equations) that describe the relationships between time-varying quantities of the system.

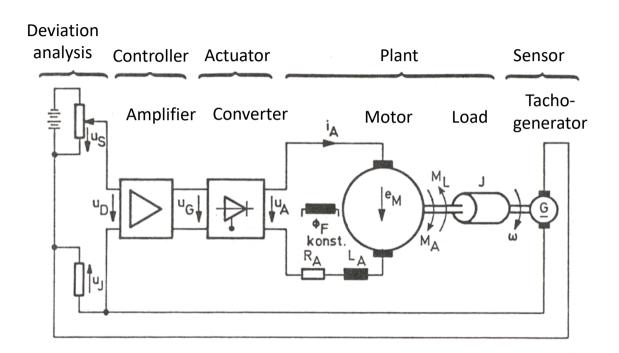
The time-varying quantities and their equations are represented by suitable symbols.

A block in the block diagram uniquely assigns each time response of the input variable to a time response of the output variable, thus acting as a transfer element.

Structure of a Control System



Example: Velocity Control of a DC Motor



German original taken from: Regelungstechnik; O. Föllinger

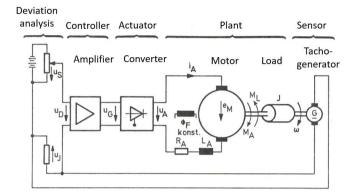
Physical Laws: Velocity Control Equations

Armature circuit of the motor

 $u_R = u_A - e_M$ e_M = Back Electromotive Force (back EMF) $e_M = K_F \cdot \omega$ K_F = Field constant

$$u_R = u_A - e_M = R_A \cdot i_A + L_A \cdot \dot{i_A} \rightarrow \frac{L_A}{R_A} \dot{i_A} + i_A = \frac{1}{R_A} u_A$$

- Mechanical movement of the armature under load $J \cdot \dot{\omega} = M_E$ J = Moment of inertia of armature and load $<math>M_E = Effective torque$
 - $M_E = M_A M_L$ M_A = Armature torque M_L = Load torque of the motor $M_A = K_F \cdot i_A$
- Power converter: $T_{ST} \cdot \dot{u}_A + u_A = K_{ST} \cdot u_G$
- Electrical amplifier: $u_G = K_V \cdot u_D$
- Speedometer generator: $u_I = K_I \cdot \omega$



Transform D-Eq. into Ordinary Equations

- Armature circuit of the motor
 - $u_R = u_A e_M$ $e_M = Opposing EMF$ $e_M = K_F \cdot \omega$ $K_F = Field constant$

 $u_R = u_A - e_M = R_A \cdot i_A + L_A \cdot \dot{i_A} \rightarrow \frac{L_A}{R_A} \dot{i_A} + i_A = \frac{1}{R_A} u_A$

- Mechanical movement of the armature under load $J \cdot \dot{\omega} = M_E$ J = Moment of inertia of armature and load $<math>M_E = Effective torque$
 - $M_B = M_A M_L$ M_A = Armature torque M_L = Load torque of the motor $M_A = K_F \cdot i_A$
- Power converter: $T_{ST} \cdot \dot{u}_A + u_A = K_{ST} \cdot u_G$
- Electrical amplifier: $u_G = K_V \cdot u_D$
- Speedometer generator: $u_I = K_I \cdot \omega$

Differential Equations (D-Eq.)

How to deal with this?

With Laplace Transform

$$\frac{L_A}{R_A} \dot{i_A} + i_A = \frac{1}{R_A} u_R$$

$$\downarrow \mathcal{L}$$

$$\mathcal{L}[\dot{f}(t)] = s \int_0^\infty e^{-st} f(t) dt - f(0) = s \cdot F(s) - f(0)$$
$$\mathcal{L}[\dot{i}_A(t)] = s I_A(s) - i_A(0) \qquad i_A(0) = 0$$

$$\frac{L_A}{R_A}\dot{i_A} + \dot{i_A} = \frac{1}{R_A}u_R$$

$$\mathcal{L}[\dot{f}(t)] = s\int_0^\infty e^{-st}f(t)dt - f(0) = s \cdot F(s) - f(0)$$

$$\mathcal{L}[\dot{i_A}(t)] = sI_A(s) - \dot{i_A}(0) \qquad i_A(0) = 0$$

$$\frac{L_A}{R_A} s \cdot I_A(s) + I_A(s) = \frac{1}{R_A} U_R(s)$$

$$\left(\frac{L_A}{R_A} \cdot s + 1\right) \cdot I_A(s) = \frac{1}{R_A} U_R(s) \rightarrow I_A(s) = \frac{\frac{1}{R_A}}{1 + \frac{L_A}{R_A} \cdot s} \cdot U_R(s)$$

$$I_A(s) = G_1(s) \cdot U_R(s)$$

$$G_1(s): \text{ Transfer function}$$

$$J \cdot \dot{\omega} = M_B$$

$$\omega (t) = \int \frac{1}{J} \cdot M_B(t) dt$$

$$\downarrow \qquad \mathcal{L}$$

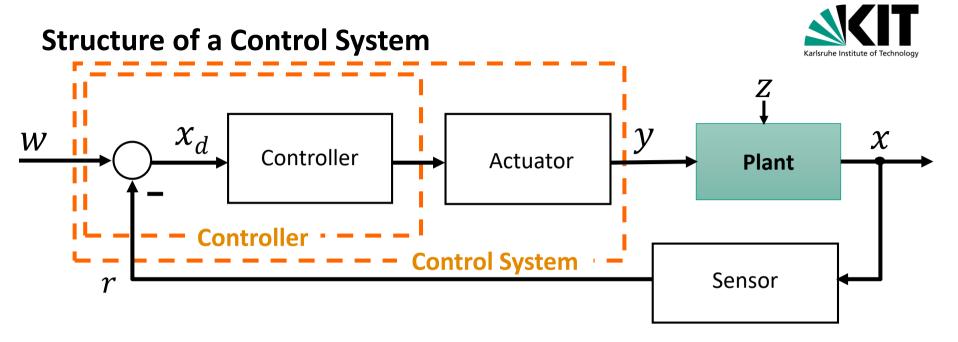
$$\omega (s) = \frac{1}{J} \cdot \frac{1}{s} \cdot M_B(s)$$

$$\omega(s) = G_2(s) \cdot M_B(s)$$

$$\mathcal{L}\left[\int_0^t f(t) \, dt\right] = \frac{1}{s} \, F(s)$$

Similarly

$$\mathcal{L}[\dot{f}(t)] = s \int_0^\infty e^{-st} f(t) dt - f(0) = s \cdot F(s) - f(0)$$



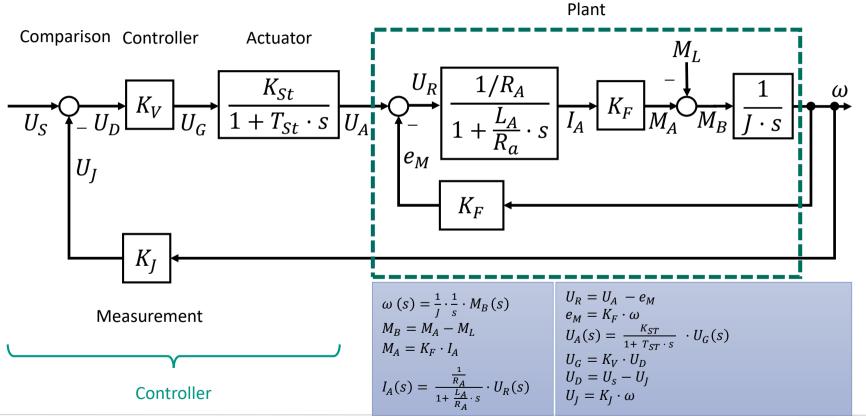
Reference W x_d

X

- **Control Input** y
- Feedback r Ζ

- Control error
- System output
- Disturbance

Velocity Controller of a DC Motor



Contents

Karlsruhe Institute of Technology

Introduction

Fundamentals of Control

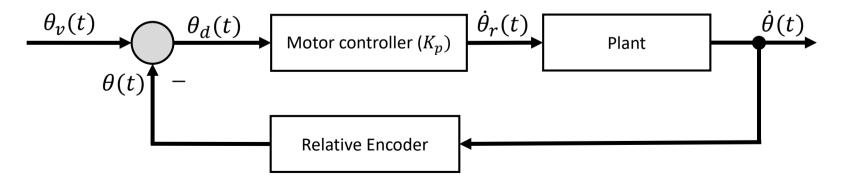
- Introduction
- Laplace Transform
- Transfer Element
- Control Loop Examples
- Stability of Control Systems
- Test Functions
- Control Concepts for Manipulators

Velocity Control

In the joint space: Continuous specification of joint velocities
 Proportional control with factor K_p

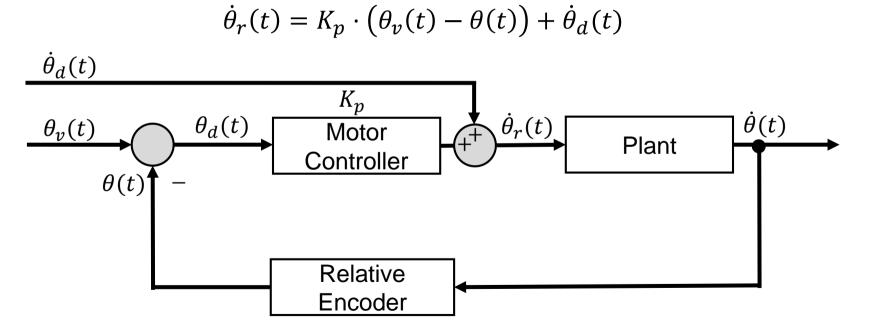
$$\dot{\theta}_r(t) = K_p \cdot (\theta_v(t) - \theta(t))$$

Property: if $\theta_d = 0$, the joint does not move.



Feedforward Control

• Velocity specificiation even if $\theta_d = 0$.

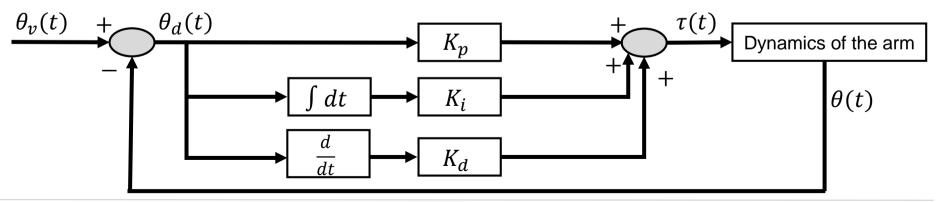


PID-Controller

Proportional-Integral-Derivative Controller

$$\tau(t) = K_p \theta_d(t) + K_i \int \theta_d(t) dt + K_d \dot{\theta}_d(t)$$

K_p: "virtual spring" that reduces the position error
 K_d: "virtual damper" that reduces the speed error
 K_i: reduces control deviations (offsets)



Laplace Transform of the PID-Controller

$$\tau(t) = K_P \theta_d(t) + K_I \int \theta_d(t) dt + K_D \frac{d}{dt} \theta_d(t)$$

$$\downarrow \quad \mathcal{L}$$

$$\tau(s) = K_P \cdot \theta_d(s) + K_I \frac{1}{s} \cdot \theta_d(s) + K_D s \cdot \theta_d(s)$$

$$\frac{\tau(s)}{\theta_d(s)} = G(s) = K_P + K_I \frac{1}{s} + K_D s$$

$$\frac{Output}{Input} = \text{Transfer function}$$

PID-Controller

Comparison of P-, I-, PD-, PI- und PID-controllers in a control loop with PT2-element as controlled system (linear time-invariant 2nd order delay element)



Compensate for control

D-component: Dynamics (how fast)

Classic Controller Types

- PID-controller (and subclasses)
 - Very common, due to being suitable for almost all process types, robust and can be realized with little effort
 - Characteristic equation:

$$u(t) = K_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{d}{dt} e(t) \right)$$

- P-component: favorable control characteristics
- I-component: steady-state accuracy
- D-component: fast regulation

with T_N = integral time, T_V = derivative time

Contents

Introduction

Fundamentals of Control

- Introduction
- Laplace Transform
- Transfer Element
- Control Loops
- Stability of Control Systems
- Test Functions
- Control Concepts for Manipulators

Example: 1-DoF Torque Control

The robot dynamic model is considered in the control system

 $\tau = M\ddot{\theta} + b\dot{\theta}$

Dynamic equation for 1-DoF arm

(planar rotation, no gravity):

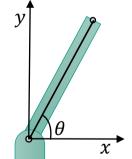
Fixed-point controller (keep value constant) realized as PD controller

Setpoint (target value): $\boldsymbol{\theta}_{v} = const$

PD-Controller

$$\tau = K_p \theta_d + K_d \dot{\theta}_d$$

τ: Torque of the motor*M*: Inertia tensor*b*: Friction



Stability: 1-DoF Torque Control (1)

System (Plant)

$$\tau = M\ddot{\theta} + b\dot{\theta}$$

Controller

$$\tau = K_p \theta_d + K_d \dot{\theta}_d$$

• Control error $\theta_d = \theta_v - \theta$ ($\theta_v = const$)

$$\theta = \theta_v - \theta_d$$
, $\dot{\theta} = -\dot{\theta}_d$, $\ddot{\theta} = -\ddot{\theta}_d$

Stability: 1-DoF Torque Control (1)

System (Plant)

$$\tau = M\ddot{\theta} + b\dot{\theta}$$

Controller

Relevant for us: Control error
$$\theta_d = \theta_n - \theta$$
 $(\theta_n = const)$

$$\tau = K_p \theta_d + K_d \dot{\theta}_d$$

$$\theta = \theta_v - \theta_d, \quad \dot{\theta} = -\dot{\theta}_d, \quad \ddot{\theta} = -\ddot{\theta}_d$$

Equating gives differential equation:

$$K_{p}\theta_{d} + K_{d}\dot{\theta}_{d} = M\ddot{\theta} + b\dot{\theta}$$
$$K_{p}\theta_{d} + K_{d}\dot{\theta}_{d} = -M\ddot{\theta}_{d} - b\dot{\theta}_{d}$$
$$M\ddot{\theta}_{d} + (K_{d} + b)\dot{\theta}_{d} + K_{p}\theta_{d} = 0$$

$$\ddot{\theta}_d + \frac{(K_d + b)}{M} \cdot \dot{\theta}_d + \frac{K_p}{M} \cdot \theta_d = 0$$

2. Order Differential Eq.: Can be solved with the help of the Laplace transform

Stability: 1-DoF Torque Control (Calculation)

$$\begin{array}{ll} \theta_{\nu} = const & \dot{\theta}_{\nu} = 0 & \ddot{\theta}_{\nu} = 0 \\ \theta_{d} = \theta_{\nu} - \theta & \dot{\theta}_{d} = -\dot{\theta} & \ddot{\theta}_{d} = -\ddot{\theta} \end{array}$$

$$M\ddot{\theta} + b\dot{\theta} = K_p(\theta_v - \theta) + K_d(\dot{\theta}_v - \dot{\theta})$$

$$M(-\ddot{\theta}_{d}) + b(-\dot{\theta}_{d}) = K_{p}\theta_{d} + K_{d}\left(0 - (-\dot{\theta}_{d})\right)$$

$$-M\ddot{\theta}_{d} - b\dot{\theta}_{d} = K_{p}\theta_{d} + K_{d}\dot{\theta}_{d}$$

$$-M\ddot{\theta}_{d} - b\dot{\theta}_{d} - K_{d}\dot{\theta}_{d} - K_{p}\theta_{d} = 0 \qquad |-K_{d}\dot{\theta}_{d} - K_{p}\theta_{d}|$$

$$-M\ddot{\theta}_{d} - (K_{d} + b)\dot{\theta}_{d} - K_{p}\theta_{d} = 0 \qquad |\cdot\left(-\frac{1}{M}\right)|$$

$$\ddot{\theta}_d + \frac{(K_d + b)}{M} \dot{\theta}_d + \frac{K_p}{M} \theta_d = 0$$

Stability: 1-DoF Torque Control (2)

Description of the system with D-Eq.:

$$\ddot{\theta}_d + \frac{(K_d + b)}{M} \cdot \dot{\theta}_d + \frac{K_p}{M} \cdot \theta_d = 0$$

Harmonic oscillation:

$$\ddot{\theta}_d + 2\zeta \omega_n \dot{\theta}_d + \omega_n^2 \,\theta_d = 0$$

- ζ: Damping
 ω_n: Natural frequency
- For 1-DoF torque control:

$$\zeta = \frac{b + K_d}{2\sqrt{K_p M}}, \qquad \omega_n = \sqrt{\frac{K_p}{M}}$$

Stability: 1-DoF Torque Control (3)

Harmonic oscillation:

$$\ddot{\theta}_d + 2\zeta \omega_n \dot{\theta}_d + \omega_n^2 \,\theta_d = 0$$

Laplace transform:

Stability: 1-DoF Torque Control (3)

Harmonic oscillation:

$$\ddot{\theta}_d + 2\zeta \omega_n \dot{\theta}_d + \omega_n^2 \,\theta_d = 0$$

Laplace transform:

$$\begin{split} s^2 \cdot \mathcal{L}[\theta_d] + 2\zeta \omega_n \cdot s \cdot \mathcal{L}[\theta_d] + \omega_n^2 \cdot \mathcal{L}[\theta_d] &= 0\\ (s^2 + 2\zeta \omega_n \cdot s + \omega_n^2) \cdot \mathcal{L}[\theta_d] &= 0 \end{split}$$

Two solutions (apart from the trivial solution $\mathcal{L}[\theta_d] = 0$)

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

Stability: 1-DoF Torque Control (4)

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

3 possible solution types:

• $\zeta > 1$: aperiodic solution: two different real solutions $\theta_d(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$

Target value is (slowly) reached via the exponential function without overshooting

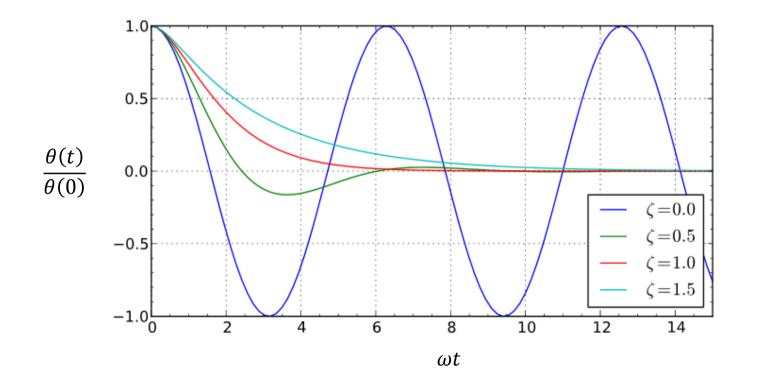
• $\zeta = 1$: critically damped response: two identical real solutions ($s_{1,2} = -\zeta \omega_n$) $\theta_d(t) = (c_1 + c_2 t)e^{-\zeta \omega_n t}$

The target value is reached quickly and the system just does not overshoot

■ ζ < 1: damped oscillation: two complex solutions $\theta_d(t) = (c_1 \cos(\omega_n t) + c_2 \sin(\omega_n t))e^{-ζ\omega_n t}$

The system overshoots

Stability: 1-DoF Torque Control (5)



Stability: 1-DoF Torque Control (6)

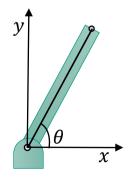
 \blacksquare Damping $\zeta\,$ is selected according to the application

• Here: No overshoot desired $\Rightarrow \zeta = 1$

$$\zeta = \frac{b + K_d}{2\sqrt{K_p M}}, \qquad \omega_n = \sqrt{\frac{K_p}{M}}$$

Parameters for the PD controller:

$$1 = \frac{b + K_d}{2\sqrt{K_p M}} \rightarrow 2\sqrt{K_p M} = b + K_d$$
$$K_d = 2\sqrt{K_p M} - b$$



Contents

Karlsruhe Institute of Technology

Introduction

Fundamentals of Control

- Introduction
- Laplace Transform
- Transfer Element
- Control Loops
- Stability of Control Systems
- Test Functions
- Control Concepts for Manipulators

Test Functions (1)

- Impulse function
- Step function
- Ramp function
- Harmonic function
- If the output variable is set to the input variable, the normalized step response is obtained
 - h(t) (transfer function of ^the system).

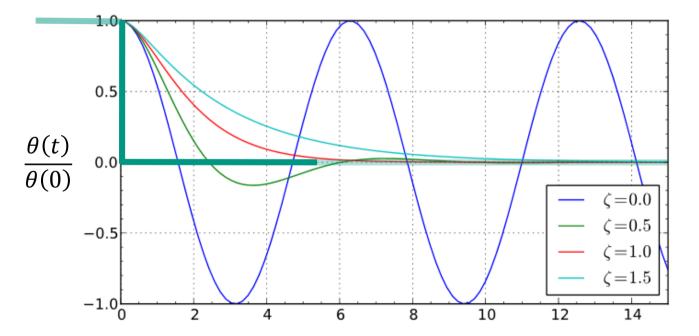
$$x_e(t) = -x_{e_0}E(t),$$

$$E(t) = \begin{cases} 0, if \ t \le 0\\ 1, if \ t > 0 \end{cases}$$

Karlsruhe Institute of Technology

Test Functions (2)

• Step function at t = 0



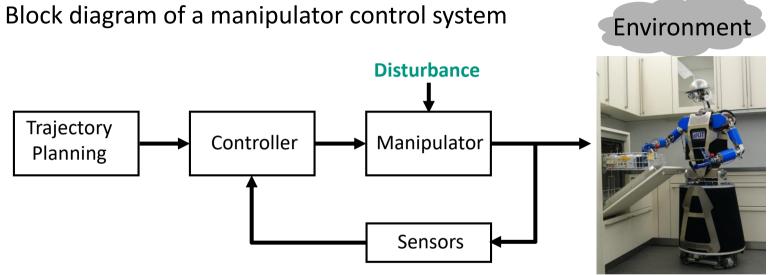
Contents

Introduction

- Fundamentals of Control
 - Introduction
 - Laplace Transform
 - Transfer Element
 - Control Loops
 - Stability of Control Systems
 - Test Functions

Control Concepts for Manipulators

Manipulator Control

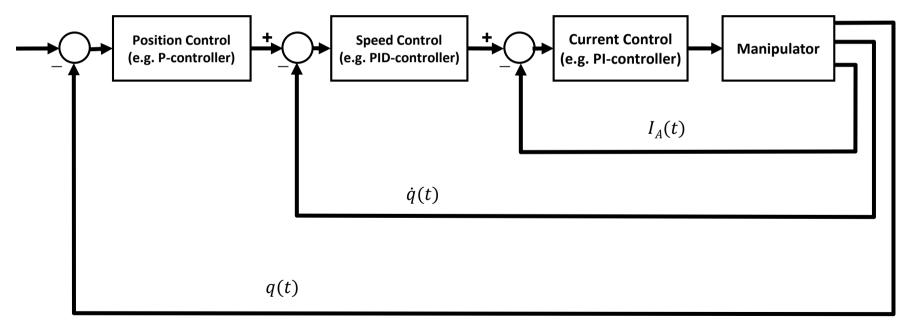


- The term "manipulator control" does not only include the classic position control, but also includes influences of the environment.
- Force and torque control plays a special role in manipulator control.

Joint-level Control: Cascading Controller

Manipulator = multi-body dynamic system

Independent linear single control loops for each individual joint



Manipulator Control

Starting point: dynamic model

During movements, **gravitational**, **centrifugal**, **Coriolis and frictional forces and torques** act on the joints due to the inertia of the manipulator.

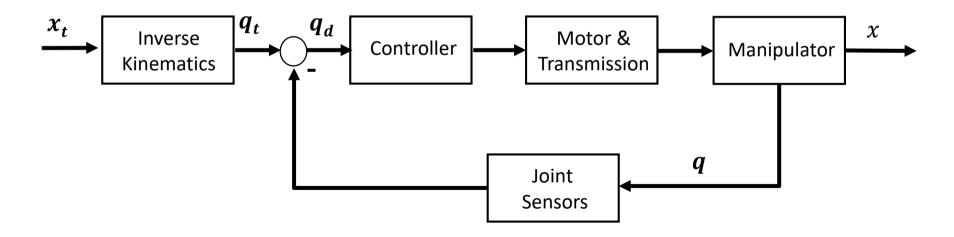
$$\boldsymbol{\tau} = M(\boldsymbol{q})\ddot{\boldsymbol{q}} + n(\dot{\boldsymbol{q}},\boldsymbol{q}) + g(\boldsymbol{q}) + R\dot{\boldsymbol{q}}$$

- au : $n \times 1$ Vector of the general static forces and torques
- M(q) : $n \times n$ Inertia matrix
- n : $n \times 1$ Vector with centrifugal and Coriolis components
- g(q) : $n \times 1$ Vector with gravitational components
- R : $n \times n$ Diagonal matrix to describe the frictional forces
- q : $n \times 1$ (Generalized) Joint positions of the manipulator

Joint Space Control

Coordinate transformation: Target trajectories in joint space

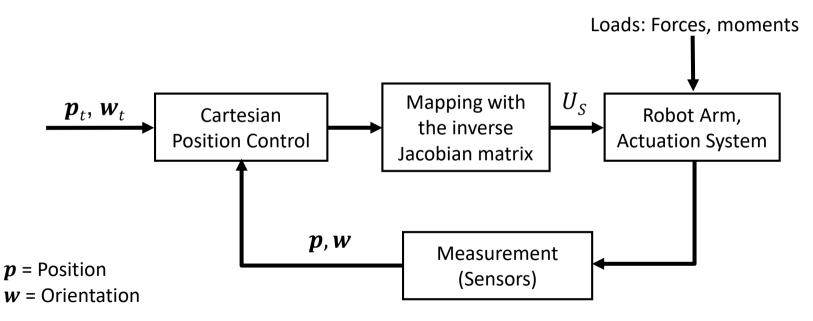
Target values for the joint actuators are calculated based on the target and measured joint angles.



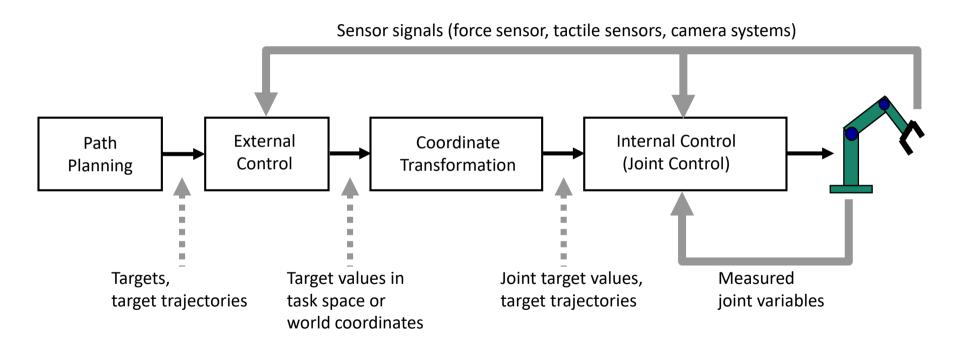
Cartesian Space Control

More Complexity in the control algorithms

Direct, targeted influencing of the individual spatial coordinates



Structure of a Robot Controller



Control Concepts for Manipulators

Precise System Model

Assumes a-priori exact knowledge of the robot dynamics model and its environment

Force/Position Control

For tasks requiring interaction forces, we must consider

- Hybrid force/position control
- Impedance control

Force/Position Control

Fundamental Problem

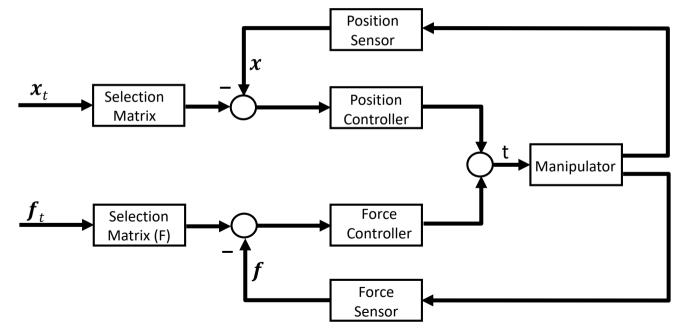
- Positions and forces are tightly interconnected.
- If the robot is in contact with the environment, every change in position also means a change in force and vice versa.

General method for solving the problem

Derive natural boundary conditions from the description of the task to be performed. Further boundary conditions are additionally introduced to fully describe the motion.

Hybrid Force/Position Control

Pure force or position control for each Cartesian direction of the arm movement



Impedance Control

Control of the dynamic relationship between force and position in case of contact.

Idea:

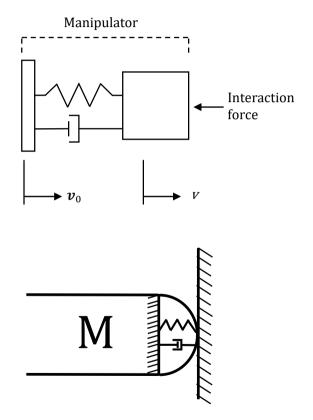
- The interaction between a robot and the environment behaves like a springdamper-mass system
- Force f and motion (defined by: x(t), $\dot{x}(t)$, $\ddot{x}(t)$) can be calculated via the spring-damper mass equation:

$$f(t) = k \cdot \mathbf{x}(t) + d \cdot \dot{\mathbf{x}}(t) + m \cdot \ddot{\mathbf{x}}(t)$$

Impedance Control (2)

The impedance can be influenced via stiffness (k), damping (d) and inertia (m)

$$f(t) = k \cdot \mathbf{x}(t) + d \cdot \dot{\mathbf{x}}(t) + m \cdot \ddot{\mathbf{x}}(t)$$
Laplace Transform
$$F(s) = (k + d \cdot s + m \cdot s^2) \cdot X(s)$$
Impedance of the spring-damper-mass system



Control of ARMAR-Robots

- Joint space control
- Cartesian space control
- Hybrid position/force control
- Impedance control: Open the fridge/dishwasher
- Image-based control (visual servoing)
- Image and force-based control
- Haptic-based control (haptic servoing)

Execution of Manipulation Tasks

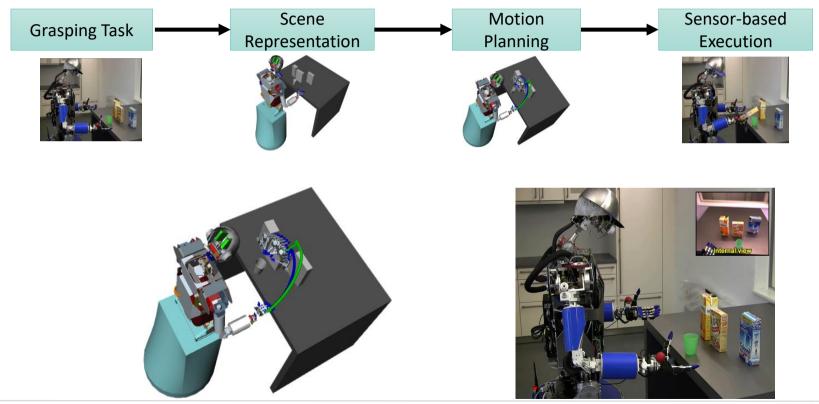
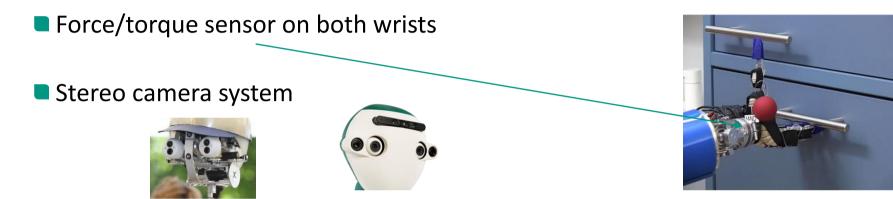


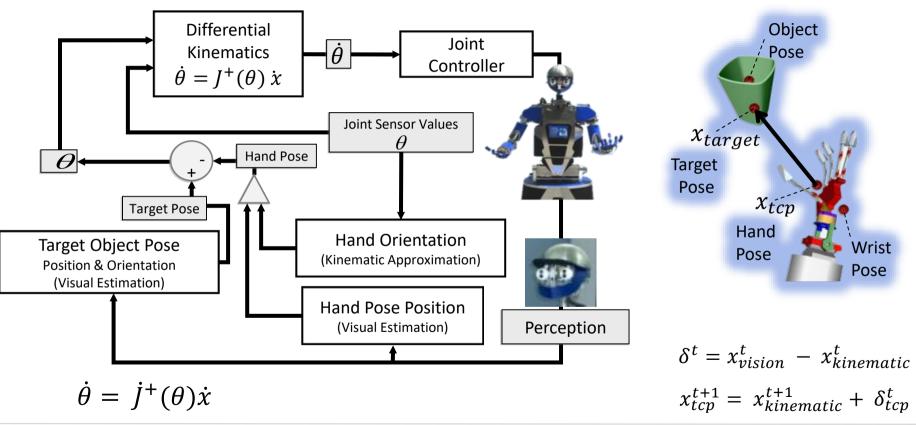
Image-based Position Control for Grasping



Tactile skin (upper and lower arm, shoulder)

Internal sensors (joint angle sensors)

Position-based visual servoing

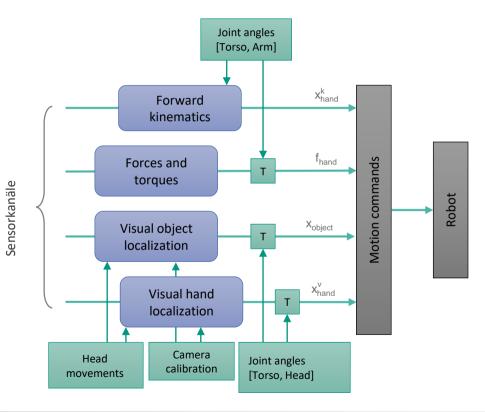


Sensor-based Execution of Manipulation Tasks

Image-based execution
 Model knowledge
 Sensors

 Force/Contact
 Cameras

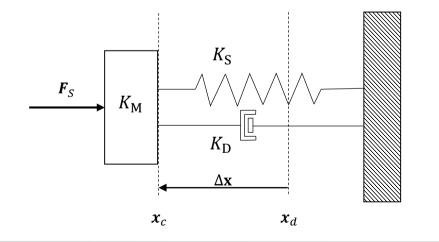
Internal sensors

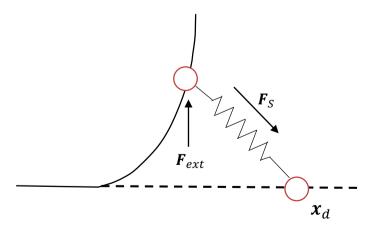


Force Control

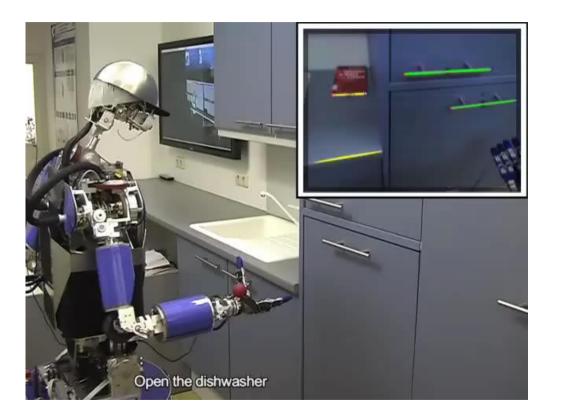
Impedance control

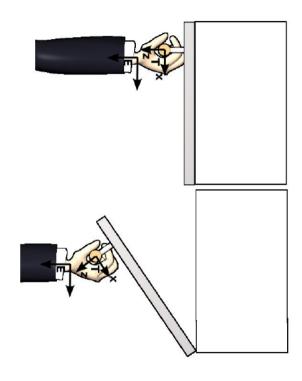
- Control of the relationship between applied force and change in position (i.e. speed) on contact with the environment!
- Speed-based simplifications: Stiffness & damping control



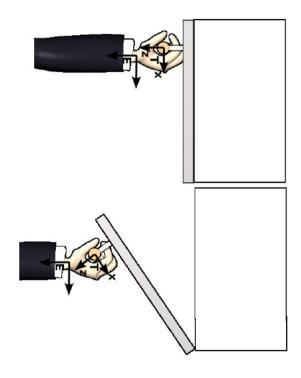


Impedance Control (Open Door)



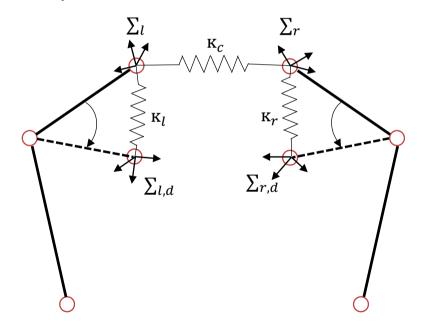


Impedance Control (Open Door)



Bimanual Impedance Control

Additional coupling stiffness between the end effectors
 Stiffnesses must be compatible



Bimanual Manipulation

- Decoupled manipulation
 - No direct coupling of the arms
 - Independent trajectories
- Coupled manipulation
 - Leader-Leader: Mutual path change
 - Leader-Follower: Path of the follower arm changes when the leader arm is deflected

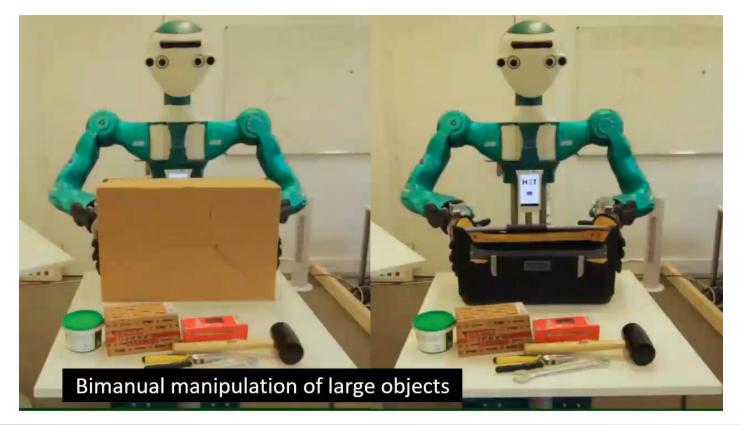
Compliant and Rigid Coupled Manipulation



Compliant Coupled Manipulation

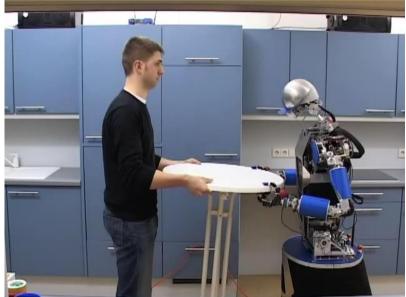
Rigidly Coupled Manipulation

Rigidly Coupled Manipulation



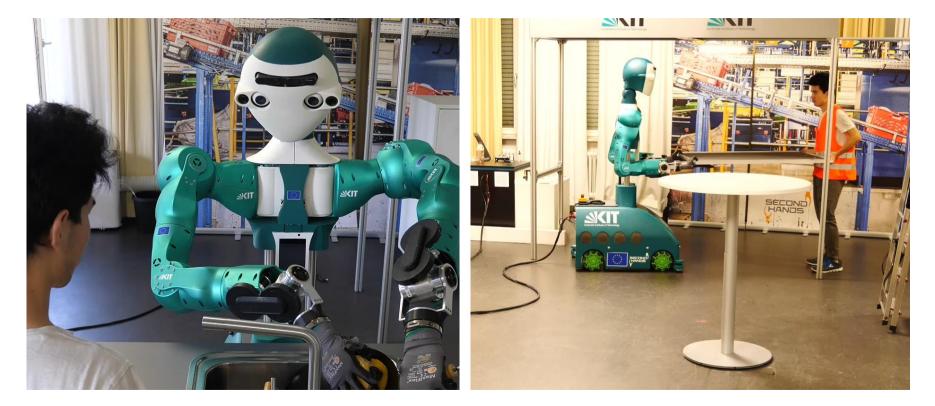
Human-Robot Colaboration

Force/position control



Human-Robot Colaboration

Physical Human-Robot Interaction



German Terminology

English	German
Controller	Regler
Control input	Stellgröße
System output	Ausgangsgröße
Disturbance	Störgröße
Reference	Führungsgröße
Feedback	Rückführgröße
Control error	Regeldifferenz
Closed loop control	Regelung mit geschlossener Schleife
Open loop control	Regelung mit offener Schleife (Steuerung)
Plant	Strecke
Laplace transform	Laplace-Transform
Torque control	Drehmomentregelung

Bibliography

[1] Otto Föllinger, "Regelungstechnik: Einführung in die Methoden und ihre Anwendung", ISBN: 9783778529706

[2] Lynch, Kevin M., and Frank C. Park. *Modern Robotics*. Cambridge University Press, 2017

